CULTEC CONTACTOR® FIELD DRAIN C-4HD SPECIFICATIONS

GENERAL
- CULTEC CONTACTOR FIELD DRAIN C-4HD CHAMBERS ARE DESIGNED FOR UNDERGROUND STORMWATER MANAGEMENT. THE CHAMBERS ARE USED FOR RETENTION, MECHANICAL SEPARATION OR CONTROLLING THE FLOW OF ON-SITE STORMWATER RUNOFF.

CHAMBER PARAMETERS
1. THE CHAMBERS WILL BE MANUFACTURED IN THE U.S.A. BY CULTEC, INC. OF BROOKFIELD, CT. (203-775-4416 OR 1-800-428-5832)
2. THE CHAMBERS WILL BE VOLATILE YIELD STRESSES OF A BLACK HEAVY DUTY POLYETHYLENE HIGH DENSITY PIPE (HIGH-MDPE).
3. THE CONTACTOR FIELD DRAIN C-4HD CHAMBERS ARE DESIGNED BY CULTEC, INC. OF BROOKFIELD, CT. (203-775-4416 OR 1-800-428-5832)
4. THE CHAMBERS WILL BE 100% COMPATIBLE WITH FIELD DRAIN C-4HD AND CULTEC, INC. OF BROOKFIELD, CT.
5. THE CHAMBERS WILL BE MANUFACTURED IN AN ISO 9001:2008 CERTIFIED FACILITY.
6. THE UNITS MAY BE TRIMMED TO CUSTOM LENGTHS BY CUTTING BACK TO ANY CORRUGATION ON THE LARGE RIB END.
7. END PLATES CANNOT BE USED WITH THIS UNIT.
8. INSTALLED LENGTH ADJUSTMENT = 0.5' (0.15 M)
9. THE CONTACTOR FIELD DRAIN C-4HD CHAMBER WILL HAVE EIGHTY DISCHARGE HOLES BORED INTO THE SIDEWALLS OF THE UNITS CLOSE TO PORTS TO PROMOTE LATERAL CONVEYANCE OF WATER.
10. THE CONTACTOR FIELD DRAIN C-4HD CHAMBER WILL HAVE 180 CORRUGATIONS.

INSTALLATION INSTRUCTIONS.
- THE CONTACTOR FIELD DRAIN C-4HD CHAMBER WILL HAVE TWO FULLY FORMED INTERMEDIATE UNITS AND HAVE NO SEPARATE END PLATES OR END WALLS.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CONTACTOR FIELD DRAIN C-4HD MODULAR UNIT MUST BE FORMED AS A SINGLE CHAMBER HAVING TWO FULLY FORMED INTERMEDIATE UNITS AND ONE FULLY OPENED-END WALL AND HAVING NO SEPARATE END PLATES OR END WALLS.
- THE CONTACTOR FIELD DRAIN C-4HD STATOR STAGE/ALONE UNIT MUST BE FORMED AS A SINGLE CHAMBER HAVING ONE FULLY FORMED INTERMEDIATE UNIT AND ONE FULLY SPACED-END WALL AND HAVING NO SEPARATE END PLATES OR END WALLS.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE UNITS MAY BE TRIMMED TO CUSTOM LENGTHS BY CUTTING BACK TO ANY CORRUGATION ON THE LARGE RIB END.
- THE CHAMBER WILL BE JOINED USING AN ISO 9001:2008 CERTIFIED FACILITY.
- INSTALLED LENGTH ADJUSTMENT = 0.5' (0.15 M)
- THE CONTACTOR FIELD DRAIN C-4HD CHAMBER WILL HAVE EIGHTY DISCHARGE HOLES BORED INTO THE SIDEWALLS OF THE UNITS CLOSE TO PORTS TO PROMOTE LATERAL CONVEYANCE OF WATER.
- THE CONTACTOR FIELD DRAIN C-4HD CHAMBER WILL HAVE 180 CORRUGATIONS.

GENERAL NOTES
- STARTER UNITS ARE USED TO BEGIN A LINE OR USED AS SINGLE UNITS IN THE MIDDLE TO START THE LENGTH OF A RUN.
- END PLATES CANNOT BE USED WITH THIS UNIT.
- UNITS ARE USED IN THE MIDDLE TO EXTEND THE LENGTH OF A RUN.
- THE CONTACTOR FIELD DRAIN C-4HD CHAMBER WILL HAVE EIGHTY DISCHARGE HOLES BORED INTO THE SIDEWALLS OF THE UNITS CLOSE TO PORTS TO PROMOTE LATERAL CONVEYANCE OF WATER.
- THE CONTACTOR FIELD DRAIN C-4HD CHAMBER WILL HAVE 180 CORRUGATIONS.
- UNIT'S CORE TO PROMOTE LATERAL CONVEYANCE OF WATER.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
- THE CHAMBER WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED AND Connector FIELD Drain C-4HD-Heavy Duty.
GENERAL NOTES

FIELD DRAIN C-4SD STANDARD DUTY TYPICAL INLET CONNECTION

FIELD DRAIN C-4SD STANDARD DUTY TYPICAL INTERLOCK

FIELD DRAIN C-4SD STANDARD DUTY PLAN VIEW

OPTIONAL INSPECTION PORT-ZOOM DETAIL

FIELD DRAIN C-4SD MANIFOLD - OPTIONAL INSPECTION PORT DETAIL

CULTEC CONTACTOR FIELD DRAIN C-4SD STANDARD DUTY CHAMBER SPECIFICATIONS

1. THE CHAMBERS WILL BE MANUFACTURED BY CULTEC, INC. OF BROOKFIELD, CT (203-775-4416).
2. CONTACT CULTEC, INC. AT 203-775-4416 FOR SUBMITTAL PACKAGES AND TO PURCHASE PRODUCT.
3. THE NOMINAL CHAMBER DIMENSIONS OF THE CULTEC CONTACTOR FIELD DRAIN C-4SD ARE 8.5 INCHES TALL, 48 INCHES WIDE AND 8.5 FEET LONG. THE INSTALLED LENGTH OF A JOINED UNIT SHALL BE 8 FEET.
4. THE CHAMBERS WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED TO PROMOTE INFILTRATION/EXFILTRATION.
5. THE CHAMBERS MUST HAVE ACHIEVED A MINIMUM OF 5 YEARS INSTALLATION HISTORY WITHOUT STRUCTURAL DEFICIENCIES.
6. THE CHAMBERS MUST BE CLEANED ONCE PER SEASON. CONNECTING PIPE OR MANIFOLD TO THE COMMERCIAL CHAMBER UNIT MUST BE COUNTERSUNK TO THE LEVEL OF THE TOP OF THE ARCH TO ELIMINATE ANY TRAPPING MICROBIAL DEVELOPMENT.
7. THE CHAMBERS MUST BE SPACED 8 FEET APART AND HAVE EACH TO HAVE ENOUGH CLEAR SPACE BETWEEN THE RIBS TO ALLOW FOR INFLUX.
8. THE CHAMBERS WILL BE JOINED AT A MINIMUM JUNCTURE TO FORM A SOARING CONTINUOUS UNIT. CONNECTIONS MUST BE FULLY SHOULDERED TO PROMOTE INFILTRATION/EXFILTRATION.
9. THE CHAMBERS MUST HAVE A CHAMBER INTEGRAL END WALL, AND HAVE NO SEPARATE END PLATES OR SEPARATE END WALLS.
10. THE CHAMBERS WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED TO PROMOTE INFILTRATION/EXFILTRATION.
11. THE CHAMBERS MUST HAVE 100 CORRUGATIONS.
12. THE CONTACTOR FIELD DRAIN C-4RSD STARTER CHAMBER MUST BE UNIFORMLY FORMED AS A WHOLE PART OF THE ELONGATED CHAMBER UNIT HAVING ONE FULLY FORMED INTEGRAL END WALL, AND HAVING NO SEPARATE END PLATES OR SEPARATE END WALLS.
13. THE CONTACTOR FIELD DRAIN C-4ESD MIDDLE/END CHAMBER MUST BE UNIFORMLY FORMED AS A WHOLE PART OF THE ELONGATED CHAMBER UNIT HAVING TWO FULLY FORMED INTEGRAL END WALLS, AND HAVING NO SEPARATE END PLATES OR SEPARATE END WALLS.
14. ALL CHAMBERS WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED TO PROMOTE INFILTRATION/EXFILTRATION.
15. THE CHAMBERS WILL BE JOINED USING AN INTERLOCKING OVERLAPPING RIB METHOD. CONNECTIONS MUST BE FULLY SHOULDERED TO PROMOTE INFILTRATION/EXFILTRATION.
16. THE CHAMBERS MUST HAVE ACHIEVED A MINIMUM OF 5 YEARS INSTALLATION HISTORY WITHOUT STRUCTURAL DEFICIENCIES.
17. THE CHAMBERS MUST HAVE A CHAMBER INTEGRAL END WALL, AND HAVE NO SEPARATE END PLATES OR SEPARATE END WALLS.
18. THE CHAMBERS MUST HAVE A CHAMBER INTEGRAL END WALL, AND HAVE NO SEPARATE END PLATES OR SEPARATE END WALLS.
19. UNITS WILL HAVE A RAISED INTEGRAL CAP AT THE TOP OF THE ARCH IN THE CENTER OF EACH UNIT TO BE USED AS AN OPTIONAL INSPECTION PORT OR CLEAN-OUT.
20. THE CONTACTOR FIELD DRAIN C-4SD STANDARD DUTY CHAMBER COMES STANDARD WITH A 4.5 INCH INLET/OUTLET OPENING.
21. PIPES ARE SUPPORTED IN THE BASE AND ENDS OF THE BASEMOUNTED CHAMBER TO BE SPACED EVERY 8 FEET.
CULTEC CONTACTOR® FIELD DRAIN C-4HD SPECIFICATIONS

GENERAL
1. The chambers will be manufactured in the U.S.A. by CULTEC, Inc., of Broad Brook, CT. (203) 775-4416 or (800) 4-CULTEC (428-5832).
2. The chamber will be vacuum thermformed of black high molecular weight high density polyethylene (HDPE) membranes.
3. The contactor will be filled with stone.
4. The outer structure will be filled with stone.
5. The contactor field drain will be manufactured to CULTEC’s modular field drain standards. Connections must be fully enclosed overlapped or meshed. Connections must be fully enclosed overlapped meshed in order to provide the necessary durability and protection from leakage.
6. The nominal chamber dimensions of the CULTEC contactor field drain C-4HD shall be 12 in. (305 mm) wide, 8 ft. (2.44 m) long, and 6 in. (152 mm) deep.
7. The maximum storage volume of a single CULTEC contactor field drain C-4HD shall be 1.692 ft³/ft (0.16 m³/m) of chamber length.
8. The normal storage volume of the chamber field drain C-4HD shall be 1.692 ft³/ft (0.16 m³/m) of chamber length.
9. The contactor field drain C-4HD shall be fully enclosed overlapped or meshed. Connections must be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
10. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
11. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
12. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
13. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
14. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
15. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
16. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
17. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
18. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
19. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.
20. The contactor field drain C-4HD shall be fully enclosed overlapped overlapped meshed in order to provide the necessary durability and protection from leakage.

GENERAL NOTES
1. These chambers are designed for underground stormwater management. The chambers are not designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
2. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
3. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
4. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
5. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
6. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
7. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
8. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
9. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
10. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
11. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
12. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
13. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
14. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
15. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
16. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
17. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
18. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
19. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.
20. The chambers are designed for rainwater harvesting, detention or controlling the flow of on-site stormwater runoff.

FIELD DRAIN C-4HD HEAVY DUTY TYPICAL INLET CONNECTION

FIELD DRAIN C-4HD HEAVY DUTY TYPICAL CROSS SECTION

FIELD DRAIN C-4HD HEAVY DUTY TYPICAL INTERLOCK

FIELD DRAIN C-4HD HEAVY DUTY MANIFOLD - OPTIONAL INSPECTION PORT DETAIL

OPTIONAL INSPECTION PORT- ZOOM DETAIL